EXCAVATION OF A HUMAN BURIAL AT THE EL PUEBLITO
SITE, LA 12741, TAOS COUNTY, NEW MEXICO

Jeffrey L. Boyer and
Linda Mick-O'Hara

Submitted by
David A. Phillips, Jr., Ph.D.
Principal Investigator

ARCHAEOLOGY NOTES NO. 29

SANTA FE 1991 NEW MEXICO
In July 1990, the Office of Archaeological Studies, Museum of New Mexico, excavated a human burial at LA 12741, the El Pueblito site, near the village of Arroyo Hondo, Taos County, New Mexico. The burial was exposed in the roadcut of State Road 577, and the excavation was carried out at the request of Mr. William L. Taylor, New Mexico State Highway and Transportation Department.

The El Pueblito site is a large pueblo located on the second terrace above the Rio Hondo. The site was probably occupied during the Pot Creek and Talpa phases (ca. A.D. 1200-1350) of the Rio Grande Coalition period, although the predominance of Taos/Kwahe’e Black-on-white may point to either an earlier Valdez phase (ca. A.D. 1100-1200) occupation or the continued use of mineral-painted pottery in the northern Taos Valley. Excavation revealed the remains of a male, about 40 to 50 years of age. The remains had been buried in a shallow pit dug into a layer of adobe representing either a floor or a collapsed wall. Fill above and surrounding the burial consisted of undifferentiated soil containing charcoal and artifacts, suggesting redeposited midden material. The only observable pathologies were dental caries and tooth loss; otherwise, the individual appears to have been in good health prior to the time of death.

LA 12741 is considered to be an ancestral site by the residents of Taos Pueblo, and the tribe has asked that the remains be given to the Pueblo for reburial.

MNM Project 41.491

State of New Mexico Annual Human Burial Excavation Permit ABE-018.

Submitted in fulfillment of Joint Powers Agreement D04332 between the New Mexico State Highway and Transportation Department and the Museum of New Mexico.
Figures

1. Project vicinity 2
2. LA 12741, site map 9
3. Profiles of the excavation unit 13
4. Plan view of burial showing orientation to roadcut and excavation unit and location of burial pit 15
5. Taos/Kwahe’e Black-on-white jar, showing design panel and elements 22
6. Photograph of burial in situ, showing burial pit and Taos/Kwahe’e Black-on-white jar 52
7. Photograph of Taos/Kwahe’e Black-on-white jar 52
8. Site location map 53

Tables

1. LA 12741, ceramic types by vessel forms 24
2. LA 12741, chipped stone artifact morphology and function by material 27
3. LA 12741, chipped stone flake type by material 27
4. LA 12741, chipped stone platform modification by material 28
5. LA 12741, ground stone artifact function by material 29
6. LA 12741, faunal remains 31
7. LA 12741, summary of faunal species identified 33
8. LA 12741, summary of macrobotanical analysis 34
9. LA 12741, summary of microbotanical analysis 35
10. LA 12741, legal and UTM location 51
INTRODUCTION

On July 19 and 20, 1990 archaeologists from the Office of Archaeological Studies, Museum of New Mexico, excavated a human burial at LA 12741, the El Pueblito site, near the village of Arroyo Hondo, Taos County, New Mexico (Fig. 1). The burial was exposed in a roadcut on the north side of State Road 577, which crosses the site. The highway right-of-way was acquired from private sources. Site locations and legal and UTM locations are located in Appendix 2.

In February 1990, the Office of Archaeological Studies was notified of the presence of the exposed remains by Mr. Vicente Lujan, Real Property Officer with the Office of the War Chief, Taos Pueblo. Mr. Lujan had been contacted by an Arroyo Hondo resident, who informed him of the remains. Because of recent maintenance work on the road shoulder, it was first thought that blading had exposed the remains. On February 12, 1990, Jeffrey L. Boyer of the Office of Archaeological Studies met Mr. Lujan at the site to assess the situation and evaluate any disturbance that may have been caused by road maintenance. The burial was found to be about 22 m west of the recently bladed area and 1 m to 1.5 m above the graded shoulder. Therefore, it appears that the burial was exposed by natural erosion of the steep cut. This steep cut is where the road drops through the end of the gravel terrace on which the site is located.

At the request of Mr. William L. Taylor of the New Mexico State Highway and Transportation Department, the Office of Archaeological Studies conducted archaeological excavations at the site to recover the burial before erosion exposed more remains and before they were removed illegally or without proper documentation and study.

The crew consisted of Jeffrey L. Boyer, Linda Mick-O’Hara, and Vernon Lujan. Boyer served as project director and supervised the excavations, analyses, and report preparation. Mick-O’Hara excavated and analyzed the burial and faunal remains recovered from the excavations. Lujan, who is also a member of Taos Pueblo, assisted in the excavations. Because Taos Pueblo considers LA 12741 to be an ancestral site and the tribal government expressed great concern for the remains, Lujan acted as a liaison between the Office of Archaeological Studies and Taos Pueblo. His participation was intended to ensure acceptable treatment of the remains during and after excavation and during disposition. Boyer analyzed the ceramic artifacts and James Moore analyzed the lithic artifacts. Dr. David A. Phillips, Director of the Office of Archaeological Studies, served as principal investigator.

This report describes the El Pueblito site, details the excavations and the analytical results, and reports on tribal recommendations for disposition of the remains.
Figure 1
Project vicinity map

Adapted from USGS 7.5' Arroyo Hondo Quad, NAD 1927
NATURAL ENVIRONMENT

Geomorphology

The project area lies within the Southern Rocky Mountain physiographic province. There are two major landforms in the region that are of direct concern to this project: the Taos Plateau and the Sangre de Cristo Mountains. The Taos Plateau is a broad region bounded on the west by the San Juan Uplift (the San Juan, Tusas, and Jemez mountains) and on the east by the Sangre de Cristo Mountains. The plateau is formed by block-faulting along the Rio Grande Rift that resulted in a wide trough (the Rio Grande Depression) that has filled with volcanic and sedimentary materials. The sedimentary materials, consisting of a variety of gravels, sandstones, volcanic rocks, cherts, and clays, make up the Santa Fe formation. A great deal of the area is capped by volcanic material, primarily basaltic flows, which are a major and obvious feature of the region (Heffern n.d.). In the vicinity of LA 12741, the Rio Hondo is lined by a thick basalt flow from Cerro Negro, a small cone that separates the Arroyo Hondo Valley from the San Cristobal Valley to the north.

The Sangre de Cristos are the southernmost extension of the southern Rocky Mountains and are made up largely of granites, schists, and quartzites. Ranging from about 2,133 m (7,000 ft) near Taos to 3,997 m (13,120 ft) at Wheeler Peak, the Sangre de Cristos in the vicinity of this project are the source of perennial streams that include the Rio Hondo, Lobo Creek, San Cristobal Creek, and Arroyo Seco. These and numerous intermittent drainages are tributaries of the Rio Grande, which flows south through the central valley about 5.7 km (3.5 miles) west of the project area. Subsequent to the vulcanism of the early Pleistocene, geologic processes in the region shifted to a period of extensive erosion during the late Pleistocene. The erosion resulted in the formation of large alluvial fans extending into the valley along the margins of the mountains. To the north and east of the Arroyo Hondo Valley, these fans cover the older basalt flows.

The El Pueblito site is located at 2,121 m (7,000 ft) elevation on the second terrace above the Rio Hondo floodplain at the eastern end of the Arroyo Hondo Valley. The terrace is actually the foot of the large mesa that McCrary (1987) calls the Des Montes Plain, a broad alluvial fan extending from the mouths of the Rio Hondo, the Arroyo Seco, and the Rio Lucero.

The major geological features—the Santa Fe formation, the volcanos, and the basalt flows—are culturally important because they have provided raw lithic materials for the region's early inhabitants. Of specific importance are sandstone, chert, and quartzite from the Santa Fe formation gravels and basalt and obsidian from the volcanic features. While most of the obsidian found on prehistoric sites in the eastern valley comes from the Jemez range to the south, No Agua Mountain near Tres Piedras did provide a poor quality obsidian (see Michels 1985). Basalt is a common lithic tool material found on prehistoric sites in the valley. In the Arroyo Hondo area, basalt was quarried from the flow lining the Rio Hondo.

Soil accumulation along the drainages has provided an important source of clay, used for pottery manufacture and for building materials. Unlike lithic materials, however, little study has been focused on clay sources.
Soils and Vegetation

LA 12741 occurs on two soil associations. North of State Road 577 are Sedillo-Orthents association soils (Hacker and Carleton 1982:50). The two primary types in this association are both deep gravelly and gravelly clay loams formed in gravelly alluvium. Sedillo soils are found on the gently sloping top of the terrace, while Orthents are found on the steep, dissected slopes of the terrace and the drainages that cut through it. Below about 27.5 cm (11 in), the Sedillo soils are slightly to strongly calcareous, a fact observed during this project as all the subsurface artifacts are coated with a layer of caliche.

When well managed, soils in the Sedillo-Orthents association support a grassland community of western wheatgrass, blue grama, galleta, and Indian ricegrass. If the soils deteriorate, the grasses give way to a brush community of big sagebrush, snakeweed, and ring muhly. The latter description characterizes the site area today.

South of State Road 577 are Sedillo-Silva association soils (Hacker and Carleton 1982:51). In this association, the Sedillo soils are found on the steep side slopes of narrow ridges, while the Silva soils occur on flat to gently sloping ridge tops. Silva soils are loams and clay loams formed in mixed alluvial and eolian sediments. While the soil association is slightly different than that of the north side of the site, it supports identical plant communities.

Climate

The Taos Valley has a semiarid climate. Cordell (1978:89, map 6) shows the mean annual rainfall to be 310 mm (12.24 in) at Taos. This agrees with Maker and others (1974:7) who show Taos's annual rainfall to be 320 mm (12.55 in) and with Hacker and Carleton (1982) who record the mean annual precipitation for the soil associations found at the site as 275 to 325 mm (11 to 13 in). Variability within these figures is high, however, ranging from -30 percent to +50 percent in any given year (Cordell 1978, map 6). Most of the precipitation comes in the form of late summer thunderstorms, while winter snow contributes relatively less to the overall available moisture.

Maker and others (1974:7) record the mean maximum temperature in Taos as 15.5 degrees C (60 degrees F), while the mean minimum is -.5 degrees C (31 degrees F). Hacker and Carleton (1982) record the mean annual temperature as 8.3 to 9.4 degrees C (47 to 49 degrees F). Cordell (1978, map 2) shows the effective temperature in the region to be 11.7 degrees C, making it one of the coolest areas in the state. Taos has an average growing season of 140 to 145 days with recorded annual variability ranging from -15 to +20 days (Cordell 1978:71; Maker et al. 1974:7), while the growing season at Arroyo Hondo ranges from 120 to 135 days (Hacker and Carleton 1982). This figure is generally more than adequate for subsistence agriculture, supporting Greiser, Greiser, and Putnam's (1990:5) contention that length of growing season is not and was not a significant limiting factor in prehistoric or historic agriculture. Rather, they point to a study conducted at Picuris Pueblo that suggests that corn needs about 533 mm (21 in) of water during its growing season, while the local precipitation pattern is just over half that amount annually. They conclude that water availability is the primary limiting factor for agriculture.
CULTURAL ENVIRONMENT

The following discussion is intended to provide a general background of the prehistory of the project area and the results of archaeological projects in the area. This discussion centers on the puebloan prehistory owing to the fact that the project focuses on a pueblo site. The reader is referred to Cordell (1978), Stuart and Gauthier (1981), and Young and Lawrence (1988) for more detailed regional syntheses.

Remains from Basketmaker and early Puebloan periods (Basketmaker II and III, Pueblo I in the Pecos Classification; late Preclassic and early Developmental in Wendorf and Reed's [1955] Rio Grande Classification) are identified only by isolated projectile points or projectile points on nonstructural sites. While Woosley (1980, 1986) discusses the Developmental period in Taos prehistory, no sites have been chronometrically dated to the first three-quarters of the period (A.D. 600-1050).

The earliest phase of the Puebloan period identified in the Taos area is called Valdez phase. This phase is commonly dated to ca. A.D. 1000-1200 by the presence of Taos/Kwahe’e Black-on-white, which has been dendrochronologically cross dated to A.D. 900-1200 (Wetherington 1968; Green 1976). However, since only four Valdez phase sites have yielded chronometric dates before A.D. 1100, the phase may date between A.D. 1050/1100 and 1200 (Crown 1990).

Sites from this phase consist of pithouses and pithouse villages, sometimes with associated surface work areas or surface rooms of jacal construction (Cordell 1978:36; Woosley 1980:8). In the southern portion of the Taos area, the pithouses are predominantly round, while those in the northern Arroyo Seco-Arroyo Hondo area are usually square or rectangular. Greiser, Greiser, and Putnam (1990) suggest a possible correlation between this pattern and Taos Pueblo traditions that tell of different groups of people inhabiting the northern and southern parts of the valley prior to the aggregation that resulted in the formation of Taos Pueblo. Associated ceramic types at Valdez phase sites include Taos/Kwahe’e Black-on-white, and a plain, incised, or neck-banded gray or brown ware known as Taos Gray.

The next phase in the Taos area is the Pot Creek phase, commonly dated to A.D. 1200-1250 by the presence of Santa Fe Black-on-white, a carbon-painted ware. Crown (1990) suggests dates between 1225 and 1260 or 1270, based on tree-ring dates from Pot Creek Pueblo. This phase was characterized by population aggregation in numerous small “unit pueblos.” Examples have been recorded in the Arroyo Seco, Arroyo Hondo, Arroyo Miranda, and Pot Creek-Rio Grande de Ranchos areas, although only two sites have been excavated (Jeancon 1929; Vickery 1969; Ottaway 1975). Kivas are first built at some sites in this phase. Taos/Kwahe’e Black-on-white continued as an important part of the ceramic assemblage. Incised and neck-banded Taos plain were largely replaced by a corrugated variety.

The Talpa phase is dated A.D. 1250-1350 by the presence of Talpa Black-on-white, perhaps a local variety of Santa Fe Black-on-white. Crown (1990) suggests beginning dates of 1260 or 1270. During this phase, population aggregation continued, apparently at the expense of the earlier small pueblos. The phase is known only from excavations at Pot Creek Pueblo, a large
site first occupied in the Valdez phase that grew to perhaps 300 ground-floor rooms during the Talpa phase. The trend of population aggregation and site growth may have set the stage for the establishment of the large pueblos at Cornfield Taos and Old Picuris. The end of the phase is established by the abandonment of Pot Creek Pueblo, which Wetherington (1968) assumes to have occurred before 1350 because neither Biscuit nor Glaze ceramics are present at the site, and which Crown (1990) places in the early 1320s on the basis of tree-ring dates.

The final phase in the prehistoric Puebloan period is unnamed but corresponds to Dick's (1965) Vadito phase, dated A.D. 1375-1500 from excavations at Old Picuris. These years are approximately those given by Ellis and Brody (1964) for the occupation of Cornfield Taos. Several other sites in the Taos area apparently date to this phase on the basis of polychrome and glazed ceramics.

Like the preceding phase, the sites are generally large, although Oliver McCrary (personal communication 1988) told Boyer of some smaller sites. One site near Llano Quemado may be ancestral to the Feather Clan at Taos Pueblo. Cornfield Taos is evidently immediately ancestral to Taos Pueblo. On the basis of ceramics, Ellis and Brody (1964) feel that Cornfield Taos was first occupied about A.D. 1300 or 1350 and abandoned about A.D. 1450, when Taos Pueblo was perhaps first occupied. Taos Pueblo is, of course, still occupied (see Boyer 1986b; Greiser et al. 1990).

The presence of historic Plains Indian groups in the area is recorded in early historic Spanish documents as well as in the archaeological record. Spielmann's (1983) research indicates that economic interactions between Plains and Pueblo Indians were relatively minor prior to the late fifteenth century, but increased considerably after this time. Archaeologically, this is reflected in a relative paucity of materials indicative of Puebloan use of plains resources at Pot Creek Pueblo. Bison bones are present from the site and John Speth (personal communication 1988) has indicated that chemical analyses may demonstrate they were obtained from the Taos Plateau. Certainly by the time of Spanish contact, Taos Pueblo had established relations with Apaches, Kiowas, Utes, and other groups, facilitated by annual trade fairs at the pueblo.

Previous Research

Several projects have recorded archaeological sites in the Arroyo Hondo Valley near LA 12741. In 1961, the New Mexico State Highway and Transportation Department conducted a series of cultural inventory surveys in Taos County, including a survey along State Road 3 (now State Road 522) from the New Mexico-Colorado border through Questa to Taos. In Arroyo Hondo, the survey recorded one site, LA 5869, a probable pithouse located at the edge of the first terrace above the Rio Hondo floodplain.

Between 1965 and 1967, the University of New Mexico Field School excavated eight sites northeast of Arroyo Hondo (Loose 1974). One of the sites is on the north bank of the Rio Hondo Canyon near Turley's Mill. The others are near Lobo Creek just west of the D. H. Lawrence Ranch. Seven of the sites are Valdez phase pithouse sites. Five of these consisted of a single rectangular pithouse, one had a single circular pithouse, and one had four rectangular pithouses and one circular pithouse. Six sites also had small two- to four-room surface structures. The
eighth site had only a three-room surface structure with several outdoor hearths, one of which yielded an archaeomagnetic date of A.D. 1120 ± 25.

In 1965, the UNM Field School also excavated LA 8146, an adobe structure on the south side of the Rio Hondo opposite Turley’s Mill, about 2.2 km (1.4 mi) northeast of LA 12741. Brody (1980) suggests that the nineteenth-century site was associated with the mill, perhaps as a dwelling for Turley’s workers.

In 1977, Schaafsma (1980) collected surface artifacts from LA 58977, a Valdez phase site located immediately west of upper Arroyo Hondo. He suspected that a pithouse was present, although no evidence of one was seen. Like LA 5869, this site, which is .6 km (.4 mi) northwest of LA 12741, is at the edge of the first terrace above the Rio Hondo floodplain.

In 1977, Schaafsma (1980) collected surface artifacts from LA 58977, a Valdez phase site located immediately west of upper Arroyo Hondo. He suspected that a pithouse was present, although no evidence of one was seen. Like LA 5869, this site, which is .6 km (.4 mi) northwest of LA 12741, is at the edge of the first terrace above the Rio Hondo floodplain.

In 1977, Schaafsma (1980) collected surface artifacts from LA 58977, a Valdez phase site located immediately west of upper Arroyo Hondo. He suspected that a pithouse was present, although no evidence of one was seen. Like LA 5869, this site, which is .6 km (.4 mi) northwest of LA 12741, is at the edge of the first terrace above the Rio Hondo floodplain.

In 1987, McCrary (1987) conducted an inventory survey of Kit Carson Electric Cooperative’s Arroyo Hondo-Des Montes transmission line. The line runs northwest-southeast across the Arroyo Hondo Valley from State Road 522 north of lower Arroyo Hondo, climbing the second terrace about .2 km (.1 mile) southwest of LA 12741. McCrary recorded eight sites. Four sites are probable Valdez phase artifact scatters. One has a cobble ring and two have cobble piles and historic structural components. All are in fields currently or recently under cultivation and no evidence of prehistoric structures was observed, although McCrary suspected their presence. Another artifact scatter with cobble piles and a historic component may date from the Pot Creek phase. It, too, is in a cultivated field and no structural evidence was noted. A lithic scatter with hearths may be an Anasazi site because of the presence of an arrow point fragment, slab metate fragments, and a two-hand mano. A large petroglyph site was found on the north side of the valley. McCrary also recorded an area containing three presumed pithouse depressions and associated artifact scatters on the terrace edge just southwest of LA 12741. He called this an extension of LA 12741, separated from the main portion of the site by the upper Arroyo Hondo morada and cemetery, and a large arroyo. Artifact density was very high and included more obsidian than McCrary had observed on any other site in his survey area.

Finally, in 1988, Rayl (1988) recorded the Acequia Madre del Llano (LA 68219). The acequia, which is fed by the Rio Hondo from a diversion about 1 km (.6 mile) northeast of LA 12741, serves 260 ha (650 acres) of irrigated land on the first terrace on the south side of the Arroyo Hondo Valley. It runs to the southwest near the base of the second terrace below LA 12741. The age of this ditch is not known, but Baxter (1990:24) asserts that its priority date of 1815 is reasonable.

A search of the New Mexico Archaeological Records Management System (ARMS) files shows only one other site in the immediate area. LA 544 is a Valdez phase artifact scatter located in lower Arroyo Hondo.

Several of the sites in the area are potentially eligible for inclusion on the National Register of Historic Places, however, only Turley’s Mill is currently on the register. No sites nominated to the register are in or near the project area.
THE EL. PUEBLITO SITE, LA 12741

Site History

LA 12741 was first recorded in 1973 by Jack K. Boyer of the Kit Carson Memorial Foundation and David H. Snow of the Laboratory of Anthropology, Museum of New Mexico. At that time, the site was given the name El Pueblito Pithouse Village and recorded as a scattered arrangement of 27 pithouses. Boyer made a sketch map showing the locations of 28 circular features and two "stone walls." When McCrary visited the area during his transmission line survey (McCrary 1987), he recorded a southwestern extension of the site. Because the site continued to be known as a pithouse village, McCrary considered his new area, which consisted of three depressions, to be an obvious extension of the site. He mapped his extension but did not re-map the main portion of the site. Although the site is identified by members of Taos Pueblo as an ancestral pueblo, it has continued to be identified by archaeologists as a pithouse village (see Greiser et al. 1990:35n), despite that fact that the largest known pithouse site in the Taos Valley, LA 9201, consists of only five scattered pithouses (Loose 1974:7-10).

As part of this excavation project, the main part of the El Pueblito site was mapped using compass and pacing. This map (Fig. 2) represents the first accurate map of the site. At the same time, an updated site form for LA 12741 was completed. McCrary’s extension was not revisited during this project.

Site Description

LA 12741 is a large pueblo site with a possible earlier pithouse component. The main portion of the site, not including McCrary’s extension, measures 300 m north-south by 200 m east-west, and is located on the edge of the second terrace above the Rio Hondo floodplain at the eastern side of the Arroyo Hondo Valley (Figs. 1 and 2). The site consists of three main structural areas that include up to 9 room blocks, 14 small, shallow depressions, and 2 large depressions.

The pithouse component is represented by two possible pithouse depressions at the upper end of a ridge. They overlook the large arroyo at the southwest side of the main portion of the site. These depressions are 7 m in diameter and appear to be isolated from a structural area to their north. However, no diagnostic ceramics were observed that could substantiate the temporal context. The component is also represented by McCrary’s extension with three depressions and artifact scatters that include Taos/Kwahe’e Black-on-white sherds. It is important to note that Daniel Wolfman and Curtis Schafsma (personal communication 1990) informed Boyer that Taos/Kwahe’e Black-on-white was the predominant painted ware observed on the whole site during the years that Schafsma lived near the site, and that this fact, coupled with the numerous depressions, was responsible for the site’s identity as a pithouse village. From this description, it appears that the site may either have a substantial Valdez phase component or that Taos/Kwahe’e Black-on-white was more common during later phases than previously realized. Artifact collection has removed most of the surface painted sherds and it is now difficult to assess
Figure 2. LA 12741, site map.
Schaafsma’s and Wolfman’s observations. How many of the numerous small depressions may be pithouses is not known. It would be interesting to study these features for evidence that pithouses were occupied during the Puebloan occupation or that pithouses were remodeled for use as kivas.

The Puebloan component is represented by three large structural areas on the three major fingers of the terrace. The structural areas are seen as large areas of darkened soil with high densities of surface artifacts. Within these areas, at least nine room blocks are seen as low mounds of adobe. The mounds are .5 to 1 m high and the taller ones may represent multistory room blocks. Twelve small depressions and two large depressions are associated with the structural areas. The small depressions are consistently 7 to 8 m in diameter, while the large depressions are 12 m and 15 m in diameter. The larger depressions are on a small finger of the terrace at the north end of a room block area.

Besides the structural features, several water and soil control features were observed. East of the large structural area, on the north side of the highway, are the remains of rock alignments, a group of rock grids, and a washed-out checkdam. Other similar features may be present in this part of the site. On the south side of the site, one small arroyo has been arrested by a gravel checkdam lining the head of the arroyo, while a low gravel wall was placed at the head of another small arroyo. These features continue to keep erosion in the arroyos from cutting into possible room blocks. Also on the south side of the site is a shallow ditch. The ditch runs from the base of the mesa hillslope through a structural area, passing two room blocks and one depression, as well as the two possible pithouse depressions. The ditch disappears near a possible depression at the southeast end of a plowed area. Whether this feature is contemporaneous with the site is not known, but it may have been dug in this century by a resident in Arroyo Hondo (Herbert Dick, personal communication 1990).

The site may have a historic component as well. This possible component is represented by sherds from a Kapo Black jar collected from the north side of the site by Jack Boyer in the early 1970s. The exact provenience of the sherds is unknown.

In addition, a very large depression is located on the north side of the site. The depression is 15 m in diameter and is surrounded by a large circular mound 1.5 m high and 5 m across. A local informant identified this feature as a stock tank dug by his grandfather earlier in this century (Herbert Dick, personal communication 1990). Dick says that the tank was fed by a ditch from the east. No ditch or opening in the surrounding mound is currently visible.
EXCAVATION PROCEDURES

When first noticed, the cranium of the human burial was minimally exposed in the north roadcut. Upon arriving at the site, the crew staked out three 1 m by 1 m grids on top of the roadcut over the burial. Because artifacts were eroding from the roadcut, the face of the cut in the vicinity of the burial was collected as a single unit. A datum stake was placed 2 m north of the grids and two grids were selected for excavation units. Grid 98N/99E was located on top of the roadcut and Grid 97N/99E extended over the roadcut and the exposed remains.

Excavation in Grid 98N/99E was conducted in 10 cm levels through Level 7. All material from Levels 1 through 5 was screened through ¼-inch mesh. Because the top of the cranium was about 60 cm below the top of the roadcut, soil from Levels 6 and 7 was screened through 1/8-inch mesh to recover any small artifacts that might have been buried with the remains. Excavation in Grid 98N/99E revealed the presence of three strata. Consequently, excavation in Grid 97N/99E was conducted using these strata, with all soil screened through 1/8-inch mesh.

Excavations continued until all fill overlying the remains was removed and the burial was fully exposed. The remains were photographed and mapped prior to removal. Micro- and macrobotanical samples were collected from the abdomen/pelvis area and from a Taos/Kwahe’e Black-on-white jar found with the burial. The samples were submitted to the Castetter Laboratory for Ethnobotanical Studies, University of New Mexico, for analysis. Results of the analyses are discussed below. Charcoal scattered in the fill surrounding the remains was collected for radiocarbon dating. We did not analyze the radiocarbon samples, but they are curated with the artifactual materials and are available for analysis at a later date. The skeletal remains and all artifacts collected were taken to the Office of Archaeological Studies for analysis.
EXCAVATION RESULTS: BURIAL 1

Stratigraphy

Inspection of the roadcut and the site surface surrounding the burial indicated that the general context of the burial was a possible midden area consisting of dark soil containing artifacts and pieces of charcoal. This deposit is immediately south of a small depression and west of a possible room block.

Excavations revealed three strata above and surrounding the burial (Fig. 3). Stratum 1 is loose loamy topsoil containing artifacts, flecks of charcoal, and numerous small gravels. The soil is dark yellow-brown and the stratum ranges from 2 cm thick at the edge of the roadcut to 12 cm thick in the northeast corner of Grid 98N/99E. Stratum 2 is more compact than the topsoil and consists of brown to dark brown loam containing numerous artifacts and bits of charcoal. Rocks in this stratum include both small and large gravels and large rocks. As is common in the Taos area, large rocks were present above the burial. A deer bone fragment and a human rib fragment were recovered from this stratum in Grid 98N/99E. Stratum 3 is a thick layer of adobe that appears to be resting on the natural alluvial gravels of the fan. This layer was initially thought to be melted adobe, but inspection of the east profile of the excavation units (Fig. 3a) suggests that it may be the remnants of a wall and floor or of a collapsed wall. Evidence for the former interpretation is the relatively flat surface of the adobe layer and the sharp vertical rise in the northeast corner of the excavation units. No courses were evident in the profile. Evidence for the latter interpretation is the thickness of the stratum. Some 7 to 8 cm of the stratum was removed in the center of Grid 98N/99E without exposing the gravels beneath. The actual thickness of the layer is not known. Stratum 3 contained no artifacts and is a light brown to pink-brown in color. A sample of the adobe was collected.

With the exception of the relative differences in compactness of Strata 1 and 2 and the presence of larger rocks in Stratum 2, the two strata are virtually identical. No lensing is evident in either strata. The stratigraphy shows that the fill above and surrounding the burial is undifferentiated and probably represents midden deposits that were disturbed by initial excavation of the burial pit and redeposited, removing evidence of the initial deposition sequence.

Burial Pit

Excavation revealed that the burial had been interred in a shallow pit dug into Stratum 3, the adobe layer. The west profile of the excavation unit (Fig. 3b) shows the west side of the pit excavated 6 to 10 cm into the adobe layer. The small column on the south side of the pit represents the top of the adobe, while its presence and depth south of the column in the roadcut is not clear. The pit was apparently oval (Fig. 4) and was about 90 cm long northwest-southeast. However, the southwest side of the pit is missing in the roadcut and only the small column, shown in the west profile (Fig. 3b), indicates the possible width of the pit.
Figure 3. Profiles of the excavation unit; (a) east profile of excavation unit, (b) west profile of excavation unit.
The sides of the burial pit above the adobe layer were not visible in the excavation unit.

Condition of the Burial

The burial, designated Feature 1, was tightly flexed, lying on its right side in the shallow burial pit (Fig. 4). Its arms were crossed over the chest and the distal femora were flexed to nearly meet the chest and arms. Although the top of the head was oriented toward the east, the individual faced north. A complete Taos/Kwahe’e Black-on-white jar (Fig. 5) had been placed in front of the face, near the crossed arms. The distal ends of the right ulna and radius almost touched the jar but all hand bones were missing.

Rodent activity had displaced most of the ribs and lower vertebrae. Grid 98N/99E produced one human rib displaced from the original burial area. One lumbar vertebra from the burial was isolated in the northeast corner of Grid 97N/99E within Stratum 1. Both scapulae were also displaced and were isolated under the cranium. The sacrum, several vertebrae, most foot and hand bones, and the patellae were not located. These may be absent due to rodent activity and the impact of rodent gnawing on the physical remains.

The left parietal and part of the occipital of the cranium were exposed in the road cut. The cranium was intact except for the sphenoid and part of the right parietal, which had been displaced and mostly destroyed by rodent tunneling. The mandible was articulated with the skull, but most maxillary and some mandibular teeth had been dislodged and were not recovered.

Analysis of the Burial

The burial recovered from LA 12741 was that of a mature Puebloan male approximately 45 to 50 years of age. Stature estimates from the measurement of his femora and tibiae place this individual between 152 cm and 155 cm (5 ft 1 in and 5 ft 2 in) in height.

The individual had a small, crowded maxilla and mandible. Only one molar with a carie on the posterior neck was retained in the maxilla. The bone tissue surrounding all maxillary molar sockets was completely resorbed. The mandible also showed complete tissue resorption where molars were lost well before the time of death. The loss or evulsion of the right mandibular second molar also made room for the eruption of the impacted third molar. This third molar contained a carie in the posterior enamel and a root-level groove on the posterior buccal aspect. Ubelaker and others (1969) have indicated that this grooving of teeth may have been done to relieve discomfort in a carious area.

Molars present suggest an age of at least 40 years, while molar loss and tissue resorption suggest an even older individual. The possible extraction and grooving in his dentition indicate that he suffered some discomfort from cavities. The lack of posterior dentition meant that mastication involved the remaining anterior teeth, resulting in their being worn well into the dentin layer.
Figure 4. Plan view of burial showing orientation to roadcut and excavation unit and location of burial pit.
A similar dental pattern was noted in the remains of a Puebloan female excavated from a cairn at LA 3643 by Peckham and Reed (1963:26). The incisors of this individual were so worn that shoveling could not be determined. The burial also exhibited loss of both second molars during life, which is observed as tissue resorption in that area. The individual also displayed lower third molars that were inclined forward. Though crowding of the mandible and maxilla were not noted in the report on LA 3643, the dental pattern similarities are of interest. Similar tooth wear and tooth loss were noted in the description of the burial of a female from Carson National Forest Site 587 (Quinn 1978).

The postcranial skeleton of this individual was for the most part unremarkable. Long bones all exhibited some roughening of the compact tissue table that can be associated with age (Bass 1987:150). The tibiae showed marked lateral displacement, which has been noted for Puebloan populations. This tibial flattening was noted in the skeletal remains of a female from LA 3643 (Peckham and Reed 1963) and the burial analysis of another adult female at Carson National Forest Site 587 (Quinn 1978). Brock (1985) identified this condition as a result of stress from maintained positions such as squatting.

The individual appeared to be a healthy male of considerable age for the period. His dental caries and tooth loss would be considered common among Puebloan populations and his small mandible and maxilla with accompanied dental crowding are apparent in at least two other burials from the area. He had no other observable pathologies.

From the published materials on human remains excavated in the Taos area, only the burial from Carson National Forest Site 587 (Quinn 1978) and one individual from Pot Creek Pueblo (Green 1976) were recovered from midden deposits similar to those encountered at LA 12741. Several individuals and partial remains were recovered from cairns (Steen 1976; Peckham and Reed 1963), pithouses, and other structural associations in the Pot Creek vicinity (Green 1976). There was apparently a wide range of burial locations and positions used in the Taos area between A.D. 1100 and 1200. The individual from El Pueblito (LA 12741) falls within the known parameters, and is therefore not an exceptional case.

Burial Inventory

Inventoried: one adult male approximately 45-50 yrs. of age

Sex Estimation: Male
1. Supraorbital ridges - prominent
2. Superior orbital margins - blunt
3. Posterior zygomatic - extended crest
4. Mastoid processes - large
5. Occipital muscle ridges - prominent
6. Chin - square
7. Pelvis - sciatic notch narrow
8. Pelvis - sacroiliac joint male
9. Pelvis - subpubic angle - narrow
10. Sacrum - curved - male

16
Age Estimate: 45-50 yrs.
1. Occlusal wear pattern on upper right maxillary dentition indeterminant
2. Mandibular occlusal wear pattern - approximately 40 yrs.
3. Femora and tibial surfaces rough - approximately 60 yrs.

Racial Estimate: Mongoloid (Native American)
1. Incisors slightly shoveled
2. Inferior zygomatic projection
3. Nasal bone projection

Cranium:

Craniometrics
- Max. cranial length: 173.1 mm
- Max. cranial breadth: 145.0 mm est.
- Auricular height: 123.0 mm
- Minimum frontal breadth: 100.0 mm
- Total facial height: 120.0 mm
- Upper facial ht.: 75.5 mm
- Nasal ht.: 48.8 mm
- Nasal breadth: 21.5 mm
- Bizygomatic breadth (Facial width): 118.2 mm
- Maxilloalveolar length: 56.2 mm
- Maxilloalveolar breadth: 54.5 mm
- Palatal length: 46.8 mm
- Palatal breadth: 34.0 mm
- Orbital height: 34.5 mm
- Orbital breadth: 39.0 mm

Cranial Inventory

The cranium exhibits slight flattening in the posterior parietal/occipital region (cradle-board deformation). The posterior right parietal and upper right occipital are missing due to rodent activity. The right temporal region and sphenoid were fragmentary and were located within the cranial vault during excavation. Only the left first molar remained in the maxilla and this contained a large carie in the posterior enamel and neck. The right maxillary molars were absent and tissue that exhibited the remains of an abscess was resorbed with a rough surface table. The left maxillary 2nd molar exhibited the same pattern but all other teeth appear to have been displaced postmortem by rodent movement; none were recovered. The palate is very small and lacks third molars all together. The anterior palate exhibits slight evidence of porosity.

Mandible

The mandible is in excellent condition with only slight root damage to the right ascending ramus. It is small, and tooth crowding is evident but no displacement occurred.

The second premolars and all the molars on the left side are missing with the tissue completely resorbed and resolved. The right second molar is also missing and the
surrounding tissue is completely resorbed. The right first and third molars are present but heavily worn. The third molar would have impacted the second molar and may be the reason for the loss or extraction of that tooth. A root level groove and a carie are present in the right third molar.

The left central and lateral incisors and the right second premolar were dislodged postmortem and were not recovered during excavation. The incisors, canines, and premolars found were worn into the dentin layer.

Vertebra:

Cervical

Two lateral fragments of the atlas were recovered to the east of the cranium. Two other fragmentary cervical vertebrae were recovered from near the base of the skull.

Thoracic

The first, second, and ninth through twelfth thoracic vertebrae were recovered during excavation of the burial. All had been displaced toward the skull by rodent activity and had been gnawed and eroded.

Lumbar

Fragments of two lumbar vertebrae were isolated with the thoracic vertebrae. The fifth lumbar was located away from the burial, in the northeast corner of the same grid unit. This latter element is fairly complete but the other fragments are heavily eroded.

Sacrum

The sacrum was not recovered and may have been destroyed by rodent activity in the area.

Sternum:

The manubrium was recovered near the upper left arm of the burial with a number of rib fragments. It is fairly complete but eroded by root growth.

Scapulae:

Right

This element is very fragmentary and was recovered from beneath the cranium. The anterior acromion process with part of the glenoid cavity and part of the axillary border were isolated. No measurements were possible.

Left

This scapula is nearly complete and in good condition. It was recovered from an area below and to the south of the skull. The vertebral border had been notched by rodent gnawing.

Max. length: 144.8 mm
Max. breadth: 96.1 mm
Glenoid cavity length: 40.0 mm
Clavicle:

Left
This is a medial fragment with fully fused epiphyses. Age estimate: 31+ years.

Ribs

Right
Fragments of the third through the sixth ribs were found.

Left
Fragments of the first and second ribs along with two other fragments that could be assigned to this side were recovered.

Side Unknown
Four fragments, all heavily rodent impacted.

Humeri

Right
Both epiphyses are damaged with the proximal end separated from the shaft. The damage appears to have been the result of both pressure and rodent gnawing. The humerus was articulated with the ulna in its original position. Rodent tooth marking is evident on the shaft. The diaphysis is also moderately rough, indicating an age of 50 to 60 years for this individual (Bass 1987:150).
Max. length: 29.8 cm. (est.) Max. diam.: 20.5 mm
Max. diam of head: 45.0 mm Min. diam.: 16.0 mm
Least circum.: 60.0 mm

Left
The element is in excellent condition. It was isolated from its primary location in articulation with the ulna.
Max. length: 29.6 cm. Max. diam.: 20.0 mm
Max. diam of head: 45.5 mm Min. diam.: 15.5 mm
Least circum.: 58.0 mm

Radii:

Right
The element is complete with slight damage to the distal end.
Length: 22.8 cm.

Left
The element is complete with slight damage to the distal end.
Length: 23.1 cm.
Ulnae:

Right
The element is complete with slightly eroded ends.
Max. length: 24.8 cm. Physiological length: 21.9 cm.

Left
The distal end of this element is missing.
Max. length: 24.5 cm. (est.)

Pelvis (Innominate):

Right
This element is heavily eroded and impacted by rodent activity. Only a fragment of the ilium is present.

Left
This side is also impacted by rodent activity. Most of the ilium with the superior half of the acetabulum is present along with fragments from the ischium and pubis. No measurements were possible.

Femora:

Right
The element is complete, exhibiting only slight erosion of the epiphyses. The proximal femur head is rodent gnawed on the posterior aspect. The diaphysis is rough, indicating advanced age.
Max. length: 40.5 cm.
Ant/post. diam.: 26.3 mm
Circum. of the midshaft: 76.0 mm
Mediolat. diam.: 23.2 mm
Max. diam. of the femur head: 44.2 mm

Left
This femur is complete with erosion of the disto-medial end. The diaphysis is rough.
Max. length: 40.0 cm.
Ant/post. diam.: 26.5 mm
Circum. of the midshaft: 77.9 mm
Mediolat. diam.: 23.5 mm
Max. diam. of the femur head: 44.0 mm

Stature Estimate
Right Femur: 2.26(40.25 cm - 2.5 cm.) + 66.379 ± 3.417
151.992 cm
59.84 in
5 ft

Left Femur: 2.26(40.0 cm - 2.5 cm.) + 66.379 ± 3.417
150.862 cm
59.39 in
5 ft
Tibiae:

Right
There is erosion at both the proximal and distal ends along with considerable rodent gnawing of these aspects. The distal epiphysis has been gnawed away. The diaphysis is flattened toward the lateral aspect. The displacement is along muscle attachment lines and appears to be related to postures maintained and muscle groups used during the life of the individual.

Max. length: not possible
Circum. at foramen: 86.1 mm

Left
The proximal end is eroded while the distal end is rodent gnawed. As in the right side, the diaphysis is displaced or flattened toward the lateral aspect.

Max. length: 34.2 cm.
Circum. at foramen: 87.0 mm

Stature Estimate
Left Tibia: 1.96(34.2 cm - 2.5 cm) + 93.752 ± 2.815

<table>
<thead>
<tr>
<th>Height</th>
<th>In</th>
<th>Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>155.469 cm</td>
<td>61.21 in</td>
<td>5 ft 1 in</td>
</tr>
<tr>
<td>158.284 cm</td>
<td>62.32 in</td>
<td>5 ft 2 in</td>
</tr>
<tr>
<td>161.10 cm</td>
<td>63.425 in</td>
<td>5 ft 3 in</td>
</tr>
</tbody>
</table>

Fibulae:

Right and Left
Only the diaphysis is present for both of these elements. The ends of both fibulae have been eroded and gnawed away.

Bones of the Feet:

Left
Cuboid, complete.

Side Indeterminate
2 first phalanges, complete.
2 second phalanges, complete.
1 third phalange, complete.

Funerary Objects

Although many artifacts were recovered during excavation of the burial, only one could be associated with the remains. It is a complete Taos/Kwahe'e Black-on-white jar (Fig. 5) found near the individual's face. The jar has a globular body, a straight neck, and a single vertical handle. It is 16.2 cm high and 13.9 cm in diameter at the widest part of the body. The neck is
Figure 5. Taos/Kwahe’e Black-on-white jar, showing design panel and elements.
5.7 cm high and 6.5 cm in diameter. The base of the jar is slightly worn, as is one side that may have been made thin. A small hole is now present in that area below the shoulder. The rim is worn so that the rim framing line is now only visible near the top of the handle. Although Wetherington (1968:53) states that Taos/Kwahe’e jars have flared rims, the rim on this vessel is straight. Below the widest point of the body, the coils are minimally smoothed.

The white slip is thin and streaked and was applied over the entire exterior surface and over the rim into the neck. Designs were executed in a mineral pigment. Painting is restricted to the upper half of the body and the neck. The rim had a solid framing line that is largely eroded but visible near the handle. Painting on the neck is limited to four heavy horizontal lines circling the neck but not meeting beneath the handle. The design on the body is a single banded panel starting below the neck. It is divided into three sections by vertically oriented panels of six solid, opposing, right triangles. Two of these dividing panels are the full width of the design band. The third consists of two opposing triangles located below the handle, which also acts to divide two of the large design sections. These design elements are characteristic of Taos/Kwahe’e Black-on-white. Wetherington (1968:51-52) states that hatchered designs are most common, followed by combinations of hatchered and solid elements, particularly in the form of alternate or opposing triangles. He also notes that "designs on jars are frequently continuous bands of repeated designs, sometimes vertically or diagonally sectioned."

The three large design panels consist of a central hatchered element framed on top and bottom by smaller solid, stepped elements attached to the top and bottom frame lines. The hatchered elements are variable. All three are stepped rectilinear designs, but two resemble rectangles connected at opposing corners while the third is a rectilinear ribbon similar to those seen in Dogoszhi-style designs. Each of the three sections is framed by a thin vertical line that separates it from the dividing motifs.
ANALYTICAL RESULTS

Ceramic Artifacts

Excavations at El Pueblito yielded 520 sherds. Although this is a large number from two shallow 1 m by 1 m grids, it is a very small sample from the site. Consequently, only two variables, ceramic type and vessel form, were monitored during analysis. Since there is some confusion over the distinctions between Taos and Kwahe’e Black-on-white, all mineral-paint sherds are classed as Taos/Kwahe’e Black-on-white. The single carbon-paint sherd is

Table 1. LA 12741, Ceramic Types by Vessel Forms (numbers in each cell are actual count, percent of row, percent of column)

<table>
<thead>
<tr>
<th>Type</th>
<th>Jar</th>
<th>Bowl</th>
<th>Other</th>
<th>Indeterminate</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taos Gray Plain</td>
<td>73</td>
<td>85</td>
<td>1 handle</td>
<td>217</td>
<td>376</td>
</tr>
<tr>
<td></td>
<td>19.4</td>
<td>22.6</td>
<td>.3</td>
<td>57.7</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>62.9</td>
<td>52.1</td>
<td>100.0</td>
<td>90.4</td>
<td>7203</td>
</tr>
<tr>
<td>Taos Gray Incised</td>
<td>26</td>
<td>49</td>
<td>0</td>
<td>14</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>29.2</td>
<td>55.1</td>
<td>.4</td>
<td>15.7</td>
<td>100.6</td>
</tr>
<tr>
<td></td>
<td>22.4</td>
<td>30.1</td>
<td>.6</td>
<td>5.8</td>
<td>17.1</td>
</tr>
<tr>
<td>Taos Gray Punctate</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>.9</td>
<td></td>
<td></td>
<td></td>
<td>.9</td>
</tr>
<tr>
<td>Taos Gray Corn-cob Impressed</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>.9</td>
<td></td>
<td></td>
<td></td>
<td>.9</td>
</tr>
<tr>
<td>Taos/Kwahe’e B/w</td>
<td>9</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>39.1</td>
<td>60.9</td>
<td>8.6</td>
<td>31.0</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>7.8</td>
<td></td>
<td></td>
<td>3.8</td>
<td>4.4</td>
</tr>
<tr>
<td>Santa Fe B/w</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100.0</td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>.6</td>
<td></td>
<td></td>
<td></td>
<td>.6</td>
</tr>
<tr>
<td>Indeterminate White Ware</td>
<td>6</td>
<td>14</td>
<td>0</td>
<td>9</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>20.7</td>
<td>48.3</td>
<td>8.6</td>
<td>38.9</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td></td>
<td></td>
<td>3.8</td>
<td>5.6</td>
</tr>
<tr>
<td>Total</td>
<td>116</td>
<td>163</td>
<td>1</td>
<td>240</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>22.3</td>
<td>31.3</td>
<td>.2</td>
<td>46.2</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td>160.1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Santa Fe Black-on-white. Unpainted sherds with a white slip, gray paste with tuff temper, or both are classed as Indeterminate White Ware. Varieties of Taos Gray are recognized and reported by surface decoration. Sherds were sorted by jar, bowl, and indeterminate vessel forms. One sherd is a handle fragment; it is classed as "other." Table 1 lists the 520 sherds by ceramic type and vessel form.

With regard to ceramic type, Taos Gray makes up almost 90 percent of the ceramic assemblage, with 72 percent being plain sherds and 17 percent having incised line decorations. The remaining 10 percent are white ware sherds, with just over half being indeterminate and the rest Taos/Kwahe'e Black-on-white. Only one Santa Fe Black-on-white sherd was recovered. The predominance of Taos/Kwahe'e Black-on-white, Taos Gray plain, and Taos Gray incised sherds is indicative of a Developmental period, Valdez phase occupation in Wetherington's (1968) Anasazi sequence for the Taos Valley. Certainly, with so small a sample and no chronometric dates, it is not possible to accurately assess these data in contrast to the very large size of the site and the presence of numerous depressions and several structural areas. However, they raise questions regarding the applicability of Wetherington's sequence, which was derived from work in the Pot Creek area, to the entire valley. Combined with data on distinct differences in pithouse shape and differential frequencies of projectile points between the northern and southern parts of the Taos area, they suggest that Greiser, Greiser, and Putnam's (1990) concerns about distinct inhabitant groups may warrant further study.

Almost half of the sherds could not be classed according to vessel form. Of the remainder, over 58 percent are bowl sherds and 42 percent are jar sherds. This figure contrasts with assemblages from the Talpa area south of Taos, where jar sherds made up 64 to 76 percent of the identifiable sherds (Boyer and Levine 1991). Anschuetz (1986) found that jar sherds comprised 76 percent of the analyzed assemblage recovered with a burial at Pojoaque Pueblo. He contends that the storage requirements of Coalition and Classic period populations would have necessitated making and using many jars (Anschuetz 1986:29). If he is right, the jar/bowl sherd ratio from our excavation at El Pueblito may suggest different subsistence activities at the site. While the small, uncontrolled sample from this large site precludes drawing conclusions from these data, our testing data from the Talpa sites and Anschuetz's burial data were also derived from small, uncontrolled samples from large sites, suggesting that the differences are not by chance.

There are no significant differences in the distribution of vessel forms by ceramic type in the El Pueblito assemblage. Eighty-two percent of the bowl sherds and 87 percent of the jar sherds are varieties of Taos Gray, with the remaining 18 and 13 percent, respectively, being whiteware sherds. This contrasts with the Talpa area sites, where jar sherds were predominantly varieties of Taos Gray and bowl sherds were usually white wares (Boyer and Levine 1991). In his Pojoaque burial sample, Anschuetz (1986:30) found that most jar sherds were plain, indented, and corrugated wares and that most bowl sherds were painted wares. Again, although the size and nature of the samples from these sites preclude assessing the significance of these differences, the similarities between the Talpa sites and the Pojoaque burial sample and the contrasts with the El Pueblito assemblage are striking.

25
Lithic Artifacts

Chipped Stone

A total of 260 chipped stone artifacts were collected from the surface and the excavation units. These artifacts were analyzed for information on raw material selection, reduction and tool manufacture, and tool use using the standardized OAS lithic analysis format (Office of Archaeological Studies 1990).

Tables 2 and 3 present the chipped stone artifacts by artifact morphology, function, and material. Basalt is by far the most common material type, comprising almost 88 percent of the assemblage. Pedernal chert and undifferentiated chert, the latter probably coming from the Santa Fe formation gravels, make up 11.6 percent of the assemblage. The remaining two artifacts are quartzite and obsidian.

With regard to the basalt artifacts, James Moore (personal communication 1990) indicates that:

No precise quantification is available, but two types of basalt were observed. The most common type was black and fine grained with olivine and hornblende phenocrysts. Some of the cortex on the material was waterworn, but most was nonwaterworn, indicating that most was probably obtained at the sources. The second variety was relatively rare and was gray and somewhat glassier, also with olivine and hornblende phenocrysts. All of the cortex on this material was waterworn, suggesting procurement from gravel terraces.

Although the quarry source for the black, fine-grained basalt is not known, LA 12741 is only a few hundred meters from the basalt-lined Rio Hondo Canyon. A possible source, including a possible quarry for the gray basalt is located near Turley’s Mill, about 2.2 km (1.4 mile) east of LA 12741. Material from this source was collected and Moore has identified it as identical to the gray basalt at LA 12741. However, the presence of waterworn cortex suggests that the occupants of El Pueblito did not go to this source but rather collected the material from the Rio Hondo gravels between the sites.

Like LA 12741, basalt is the most common lithic material on sites on Guadalupe Mountain (Seaman 1983), between Taos and Questa (Viklund 1983), near Valdez (Rule 1973), on Garrapata Ridge (Hume 1973; 1974a; 1974b), at San Antonio Mountain and Red Hill (Boyer 1984, 1988; Condie and Smith 1989), and along the Taos-Black Lake transmission line corridor (Rudecoff 1982). It is important to note that these areas are in the northern part of the Taos Valley, closer to volcanic features including basalt flows. Three references suggest that basalt may have been used primarily in response to its immediate availability. Woosley (1986) states that on lithic scatter sites in the area west of Llano Quemado, obsidian is the most common material, comprising over 60 percent of assemblages. Boyer (1986a) notes that along the Hernandez-Taos transmission line corridor, basalt is the predominant material on sites near the Rio Grande gorge and the Comanche Rim, both basalt-capped features. However, in the sand hills between the gorge and the Comanche Rim, obsidians and cherts are the most common materials. He suggests that basalt was used most frequently where it was available but was not commonly
Table 2. LA 12741, Chipped Stone Artifact Morphology and Function by Material (numbers in each cell are actual count, percent of row, percent of column)

<table>
<thead>
<tr>
<th>Material</th>
<th>Core Flake</th>
<th>Biface Flake</th>
<th>Resharp Flake</th>
<th>Angular Debris</th>
<th>Core</th>
<th>Biface</th>
<th>Proj. Pt.</th>
<th>Drill</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chert, Undifferentiated</td>
<td>73.3</td>
<td>6.4</td>
<td>0</td>
<td>0</td>
<td>17.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>Basalt</td>
<td>6.7</td>
<td>27.1</td>
<td>60.2</td>
<td>100.0</td>
<td>123</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>Obsidian</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Quartsie</td>
<td>0.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Total</td>
<td>173.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

* One artifact not included in table is a potlid.

Table 3. LA 12741, Chipped Stone Flake Type by Material (numbers in parentheses are percentages of row)

<table>
<thead>
<tr>
<th>Material</th>
<th>Primary Core</th>
<th>Secondary Core</th>
<th>Biface/Resharp</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chert, Undifferentiated</td>
<td>2 (18.2)</td>
<td>9 (81.8)</td>
<td>0</td>
<td>11 (100.0)</td>
</tr>
<tr>
<td>Chert, Pedernal</td>
<td>0</td>
<td>6 (54.6)</td>
<td>5 (45.4)</td>
<td>11 (100.0)</td>
</tr>
<tr>
<td>Basalt</td>
<td>6 (3.7)</td>
<td>150 (92.0)</td>
<td>7 (4.3)</td>
<td>163 (100.0)</td>
</tr>
<tr>
<td>Total</td>
<td>8 (4.3)</td>
<td>165 (89.2)</td>
<td>12 (65.2)</td>
<td>185 (100.0)</td>
</tr>
</tbody>
</table>

transported to other areas in significant quantities. In the Talpa area, basalt was only one of four local materials making up most of the lithic assemblages from tested sites along State Road 518 (Boyer and Levine 1991). While basalt is certainly ubiquitous in its presence on sites throughout the valley, differential distribution may suggest conclusions about its desirability.
The flake to angular debris ratio is 3.25, a relatively low ratio indicating a predominance of core reduction. Most artifacts have little or no cortex. In fact, the cortical to noncortical debitage ratio is only .1. This very low figure suggests both that the later stages of reduction were most common and that cores were brought to the site in an already reduced condition. Interestingly, however, over half of the cores have some cortex remaining on them. The significance of this dichotomy is obscured by the very small sample size from this large site. The data in Table 3 support the conclusion that the assemblage is characterized by debitage from later stages of reduction, since over 89 percent of the flakes are secondary core flakes. This suggests that most reduction was intended to remove flakes from already partially reduced cores. Only about four percent of the flakes are primary flakes, and in fact, there are more biface and resharping flakes than primary core flakes. Table 3 also shows that, while the percentages of biface flakes are generally low, Pedernal chert is a significant exception. Almost half of the Pedernal flakes are biface flakes. This suggests that most Pedernal chert came to the site as complete or nearly complete tools. Again, however, the significance of this pattern is obscured by the small sample size.

The presence of flake platform types by material is summarized in Table 4, which shows that over 90 percent of the platforms are not modified. Of the 10 flakes with modified platforms, six are biface flakes. It seems possible that little or no core platform preparation took place and that most or all modified platforms are related to some stage of biface reduction.

From these data, we may suggest that both primary core reduction and actual tool manufacture were rare activities, and that most lithic reduction focused on removing flakes from already partially reduced cores. Based on this conclusion, we would expect to see few formal tools.

In fact, of the 260 lithic artifacts, only 10 (3.8 percent) are formal tools (Table 3). Of these, only three are intact. They include a Pedernal chert Pueblo side-notched projectile point, a small basalt projectile point blank that may have been lost or discarded during manufacture, and a basalt biface shaped like a chopping tool but with no obvious wear.

The other seven tools are broken. Three appear to have been broken during use. They are a basalt Pueblo side-notched point base with a haft snap indicating impact fracture, a basalt serrated point blade with an impact fracture at its proximal end, and a Pedernal chert drill. Only the tip is missing from this tool, which shows rotary wear at the base of the broken tip. Four tools were apparently broken during manufacture. They include two basalt bifaces with lateral snap scars, a small obsidian biface, and a basalt side-notched point broken during notching.

Table 4. LA 12741, Chipped Stone Platform Modification by Material (numbers in parentheses are percentages of total)

<table>
<thead>
<tr>
<th>Material</th>
<th>Platform Modification</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unmodified</td>
<td>Modified</td>
<td>Total</td>
</tr>
<tr>
<td>Chert, Undifferentiated</td>
<td>7</td>
<td>0</td>
<td>7 (6.4)</td>
</tr>
</tbody>
</table>

28
Material	Platform Modification
Chert, Pedernal | 3 (2.8) | 2 (1.8) | 5 (4.6)
Basalt | 89 (81.7) | 8 (7.3) | 97 (89.0)
Total | 99 (90.8) | 10 (9.2) | 109 (100.0)

Ground Stone

Nine ground stone artifacts were recovered from El Pueblito. They were analyzed using the OAS standardized ground stone format (Bullock et al. 1990) and are listed by material and function in Table 5. Only the basalt mano is complete; all other artifacts are fragments. One large slab metate fragment was found under the cranium, although it did not appear to be directly associated with the burial. The other artifacts were recovered from the fill.

Table 5. LA 12741, Ground Stone Artifact Function by Material (numbers are actual counts)

<table>
<thead>
<tr>
<th>Material</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Metate, slab</td>
</tr>
<tr>
<td>Quartzite</td>
<td>2</td>
</tr>
<tr>
<td>Basalt, vesicular</td>
<td>0</td>
</tr>
<tr>
<td>Basalt, non-vesicular</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
</tr>
</tbody>
</table>

Five shaped slab fragments were recovered. They are thin (1.5 to 2 cm), tabular, gray basalt that resembles the gray basalt observed in the chipped stone analysis. The edges are shaped by flaking and surfaces are quite smooth, but no consistent evidence of grinding or polishing is present. The function of these artifacts is unknown. The indeterminate artifact is a small piece of vesicular basalt. One surface is very smooth but no striations are present. The surface is a deep orange-red color that contrasts distinctly with the gray color of the rock. The origin of this color is unknown.
Faunal Remains

Thirty-six nonhuman bone fragments were recovered. They were analyzed using the comparative collections at the Office of Archaeological Studies and the Museum of Southwest Biology. All remains were identified to the most specific level possible given the degree of fragmentation. Each specimen was also identified by element, portion of element, side, and general age. Any indications of environmental, animal, or human impact to these specimens was also noted. Results of the analysis are presented in Table 6. Table 7 summarizes the species identified.

Of the 36 fragments recovered, 26 (72.2 percent) could only be identified as small, medium, or large mammal. The remaining 10 specimens (27.8 percent) could be identified to one genus and three species. They include Botta's pocket gopher (*Thomomys bottae*), desert cottontail (*Sylvilagus auduboni*), deer (*Odocoileus* sp.), and turkey (*Meleagris gallopavo*). All of these species are commonly found as subsistence remains from Puebloan period sites.

The excavation area had been heavily disturbed by rodents. Botta's pocket gopher is ubiquitous throughout the Southwest and may have been the species impacting this midden area. However, this does not preclude the species being part of the prehistoric diet. Thomas's (1971) criteria for distinguishing cultural versus intrusive faunas specify that intrusive species will be represented by complete or nearly complete skeletal remains. In this case, it would seem the two mandible fragments and single cranial fragment isolated are cultural rather than intrusive in nature. Since pocket gophers are frequently identified as part of the subsistence remains from archaeological sites of this period and the ethnographic record indicates the use of these small mammals as part of Puebloan diet (Cushing 1927; Beaglehole 1936), they were probably eaten at this site as well.

It is interesting that large mammal fragments and deer remains comprise a significant part of this sample (33.3 percent and 11.1 percent respectively). This may indicate that hunting played a important role in the subsistence regime of this population. The location of LA 12741 would provide access to several large animal species in the general area and in the hills and mountains nearby. This sample is, however, too small to make more than suggestions about the importance of large mammal procurement to the population that occupied this ruin.

The presence of desert cottontail and turkey in the sample indicate their use at the pueblo. Again, the sample for both species is too small to suggest importance or specific usage.

The small faunal sample recovered from this excavation provides some indication of the species consumed by the prehistoric occupants of this pueblo. All of the species identified are typically found as subsistence remains from Puebloan period ruins. The amount of large mammal bone recovered may suggest an emphasis on hunting among this population, but a larger sample size would be needed to draw meaningful conclusions.
Table 6. LA 12741, Faunal Remains

<table>
<thead>
<tr>
<th>FS</th>
<th>Fea.</th>
<th>Strat</th>
<th>Level</th>
<th>Species</th>
<th>Element</th>
<th>Portion</th>
<th>Side</th>
<th>Age</th>
<th>Environ*</th>
<th>Animal*</th>
<th>Burn*</th>
<th>Buick*</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>large mammal</td>
<td>long bone</td>
<td>frag.</td>
<td>I</td>
<td>1</td>
<td>weathered, lt.</td>
<td>tanned</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>large mammal</td>
<td>long bone</td>
<td>frag.</td>
<td>I</td>
<td>1</td>
<td>calcined</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>medium mammal</td>
<td>plateblade</td>
<td>frag.</td>
<td>I</td>
<td>1</td>
<td>weathered, lt.</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>medium mammal</td>
<td>plateblade</td>
<td>frag.</td>
<td>I</td>
<td>1</td>
<td>weathered, lt.</td>
<td>black</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Meteagrulis gallopavo</td>
<td>eggshell</td>
<td>frag.</td>
<td>I</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Odocoileus sp.</td>
<td>metacarpal</td>
<td>proximal</td>
<td>R</td>
<td>M</td>
<td>impact proximal</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Odocoileus sp.</td>
<td>tooth/upper</td>
<td>damaged</td>
<td>L</td>
<td>I</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>small mammal</td>
<td>indeter.</td>
<td>frag.</td>
<td>I</td>
<td>1</td>
<td>weathered, lt.</td>
<td>black</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>small mammal</td>
<td>long bone</td>
<td>frag.</td>
<td>I</td>
<td>1</td>
<td>tanned</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>small mammal</td>
<td>metapodial</td>
<td>frag.</td>
<td>I</td>
<td>J</td>
<td>tanned</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Sylvilagus auduboni</td>
<td>scapula</td>
<td>distal</td>
<td>R</td>
<td>M</td>
<td>weathered, mod.</td>
<td>black/calced</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Thomomys bottae</td>
<td>cranial/</td>
<td>anterior</td>
<td>A</td>
<td>M</td>
<td>weathered, lt.</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>Thomomys bottae</td>
<td>maxilla</td>
<td>ascending</td>
<td>L</td>
<td>I</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Odocoileus sp.</td>
<td>metapodial</td>
<td>diaphysis</td>
<td>I</td>
<td>I</td>
<td>weathered, lt.</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUBTOTAL 24
<table>
<thead>
<tr>
<th>FS</th>
<th>Fea.</th>
<th>Strat</th>
<th>Level</th>
<th>Species</th>
<th>Element</th>
<th>Portion</th>
<th>Side</th>
<th>Age</th>
<th>Environ*</th>
<th>Animal*</th>
<th>Burn*</th>
<th>Butch*</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>large mammal</td>
<td>long bone</td>
<td>frag.</td>
<td>I</td>
<td>I</td>
<td>weathered, mod.</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>4</td>
<td></td>
<td>Odocoileus sp.</td>
<td>humerus</td>
<td>distal</td>
<td>L</td>
<td>M</td>
<td>weathered, lt.</td>
<td>carn. bite marks</td>
<td></td>
<td>impact</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>5</td>
<td></td>
<td>large mammal</td>
<td>long bone</td>
<td>diaphysis frag.</td>
<td>I</td>
<td>I</td>
<td>calcined</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>5</td>
<td></td>
<td>large mammal</td>
<td>plate/blade</td>
<td>frag.</td>
<td>I</td>
<td>I</td>
<td>black</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>5</td>
<td></td>
<td>Sylvilagus auduboni</td>
<td>humerus</td>
<td>distal 3/4</td>
<td>L</td>
<td>M</td>
<td>weathered, lt.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>5</td>
<td></td>
<td>Thomomys bottae</td>
<td>mandible</td>
<td>damaged</td>
<td>L</td>
<td>M</td>
<td>weathered, mod.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>6</td>
<td></td>
<td>large mammal</td>
<td>long bone</td>
<td>frag.</td>
<td>I</td>
<td>I</td>
<td>lt. black</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>6</td>
<td></td>
<td>medium mammal</td>
<td>plate/blade</td>
<td>frag.</td>
<td>I</td>
<td>I</td>
<td>weathered, lt.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>7</td>
<td></td>
<td>large mammal</td>
<td>long bone</td>
<td>diaphysis frag.</td>
<td>I</td>
<td>I</td>
<td>weathered, lt.</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>7</td>
<td></td>
<td>large mammal</td>
<td>tooth</td>
<td>frag.</td>
<td>I</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

SUBTOTAL

12

TOTAL

36

*ENRON, environmental modification; ANIMAL, animal modification; BURN, evidence of burning; BUTCH, evidence of butchering.
SIDE: I, indeterminate; R, right; L, left; A, axial
AGE: I, indeterminate; J, juvenile; M, mature
ENRON: lt, light; mod, moderate
Table 7. LA 12741, Summary of Faunal Species Identified

<table>
<thead>
<tr>
<th>Species</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small mammal</td>
<td>9</td>
<td>25.0</td>
</tr>
<tr>
<td>Medium mammal</td>
<td>5</td>
<td>13.9</td>
</tr>
<tr>
<td>Large mammal</td>
<td>12</td>
<td>33.3</td>
</tr>
<tr>
<td>Thomomys bottae</td>
<td>3</td>
<td>8.3</td>
</tr>
<tr>
<td>Botta’s pocket gopher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvilagus auduboni</td>
<td>2</td>
<td>5.6</td>
</tr>
<tr>
<td>Desert cottontail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Odocoileus sp.</td>
<td>4</td>
<td>11.1</td>
</tr>
<tr>
<td>Deer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meleagris gallopavo</td>
<td>1</td>
<td>2.8</td>
</tr>
<tr>
<td>Turkey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Botanical Remains

Macrobotanical Remains

Two flotation samples were collected from the Taos/Kwahe’e Black-on-white jar associated with the burial and the abdominal area of the human remains. Both were submitted for scanning to look for economically important plant remains. Toll (1990:1) provides the rational for scanning prior to full-sort analyses:

In a case such as a burial, where the survival of unburned cultural plant materials is not likely, scanning is a cost-efficient method of providing an overview of botanical conditions, without spending a great deal of laboratory time counting and labeling modern, intrusive seeds.

Toll (1990:1-2; see Table 8) reports the results of scanning as follows:

Scanning the El Pueblito samples produced evidence of two kinds of activity. Carbonized Zea mays cupules (found in both samples, but more common in FS 38 from a jar associated with the skeleton) and a carbonized seed (lacking its seed coat, but tentatively identified as Amaranthus, a frequently utilized food plant) attest to ambient prehistoric trash. These materials are cultural, but probably have nothing to do with the burial per se. Other unburned items are present, including
small numbers of goosefoot, purslane, and spurge seeds (these are all common widespread annual weeds, producing large numbers of tiny seeds). Both juniper seeds and pinyon nutshell fragments show fresh breaks and teeth marks; rodent scats in FS 42 further encourage us to dismiss these materials as recent intrusions.

Flotation remains from FS 38 and 42 link some of the floral inclusions to associated prehistoric activity (corn agriculture and gathering of wild plant foods) but do not expose any plant utilization specifically associated with the burial.

Table 8. LA 12741, Summary of Macrobotanical Analysis (from Toll 1990)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Provenience</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FS 38, Taos/Kwahe’c</td>
</tr>
<tr>
<td></td>
<td>B/w Jar</td>
</tr>
<tr>
<td></td>
<td>FS 42, Abdominal</td>
</tr>
<tr>
<td></td>
<td>Region of Burial</td>
</tr>
<tr>
<td>ANNUALS</td>
<td></td>
</tr>
<tr>
<td>Chenopodium</td>
<td>+</td>
</tr>
<tr>
<td>(goosefoot)</td>
<td></td>
</tr>
<tr>
<td>Amaranthus</td>
<td>+*</td>
</tr>
<tr>
<td>(pigweed)</td>
<td></td>
</tr>
<tr>
<td>Portulaca</td>
<td>+</td>
</tr>
<tr>
<td>(purslane)</td>
<td></td>
</tr>
<tr>
<td>Euphorbia</td>
<td>+</td>
</tr>
<tr>
<td>(Spurge)</td>
<td></td>
</tr>
<tr>
<td>PERENNIALS</td>
<td></td>
</tr>
<tr>
<td>Juniperus</td>
<td>+</td>
</tr>
<tr>
<td>(juniper)</td>
<td>(twigs)</td>
</tr>
<tr>
<td>Pinus edulis</td>
<td>+</td>
</tr>
<tr>
<td>(pinon)</td>
<td></td>
</tr>
<tr>
<td>CULTIVARS</td>
<td></td>
</tr>
<tr>
<td>Zea mays</td>
<td>cupules*</td>
</tr>
<tr>
<td>(corn)</td>
<td>cupule*</td>
</tr>
</tbody>
</table>

*some or all specimens carbonized
+ 1-10 seeds
++ 11-25 seeds
+++ >25 seeds

Microbotanical Remains

Two soil samples for pollen analysis were also collected from the contents of the jar and the from the abdominal area of the burial. The two samples were very different in their composition and their pollen concentrations (Table 9). Both were dominated by Cheno-am and Pinus pollens, but
the abdominal sample had a much higher concentration value and contained significant amounts of pollen from "economically important taxa" such as Cactaceae, Caryophyllaceae, Solanaceae, Polygonum, and Eriogonum (Table 9) (Holloway 1991:2). A chi-square test performed on the concentration values showed that there is almost no probability that the differences between the samples occurred by chance. Because soil from beneath the burial was not collected for comparative analysis, "we cannot conclusively demonstrate that the sample...from the abdominal region actually represents pollen in the abdominal cavity of the burial at the time of interment" rather than reflecting the local pollen rain (Holloway 1991:3). However, Holloway (1991:3) states that "it is highly probable that pollen assemblage FS 43 does indeed represent pollen ingested by the individual while alive."

Zea mays pollen was not present in either sample. This is not surprising in the case of the abdominal sample if the sample reflects the person's diet just prior to death. However, we were told by a representative of Taos Pueblo that corn pollen might be present in the jar because of ceremonial activity. While we cannot interpret its absence, it is interesting to note that the jar contained more burned corn cupules than the abdominal sample.

Table 9. LA 12741, Summary of Microbotanical Analysis (from Holloway 1991)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>FS 44, Taos/Kwah'e B/w Jar</th>
<th>FS 43, Abdominal Region of Burial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td>Concentration</td>
</tr>
<tr>
<td>Pinus</td>
<td>23</td>
<td>417</td>
</tr>
<tr>
<td>Juniperus</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Picea</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Quercus</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rosaceae</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Caryophyllaceae</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Solanaceae</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polygonum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eriogonum</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sarcobatus</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Poaceae</td>
<td>8</td>
<td>145</td>
</tr>
<tr>
<td>Cheno-am</td>
<td>138</td>
<td>2500</td>
</tr>
<tr>
<td>Cheno-am anth. fragments</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Asteraceae h.s.</td>
<td>11</td>
<td>199</td>
</tr>
</tbody>
</table>
Discussion

The macro- and microbotanical samples show dramatic differences between the contents of the jar and the abdominal region of the burial. As Holloway points out, without control samples from the fill near or beneath the burial, we cannot demonstrate that the abdominal samples represent the contents of the individual's digestive tract. However, if Holloway is correct in asserting that the pollen may well have been ingested prior to death, we may suspect that the flotation remains also came from the burial, since the samples are from the same context. Further, unless the jar was filled with soil before burial, we may expect that its contents reflect the floral remains present in the midden fill in which the burial was placed. Toll's conclusions and Holloway's disclaimer aside, it is possible that the floral remains from the abdominal region reveal plant foods consumed prior to death.
LA 12741, the El Pueblito site, is a large pueblo site with a possible earlier pithouse component. The site consists of three main structural areas that include up to 9 room blocks, 14 small, shallow depressions, and 2 large depressions.

Excavations at LA 12741 recovered the buried remains of a Puebloan male about 40 to 50 years of age at the time of death. Stature estimates place him between 152 and 155 cm (5 ft 1 in and 5 ft 2 in) in height. With the exception of the small bones in the hands and feet, most ribs, and part of the vertebral column, the remains are essentially complete. His only observable pathologies were dental, including caries, crowding, and loss, all of which would be considered common in Puebloan populations. The only burial item recovered is a Taos/Kwahe'e Black-on-white jar that was placed in front of the individual's face. Excavations revealed that the burial context was a pit excavated through a probable midden deposit and into an adobe layer that could be either melted adobe or a floor or wall.

Analysis of 520 sherds showed that varieties of Taos Gray make up almost 90 percent of the ceramic assemblage. The rest are Taos/Kwahe'e Black-on-white and Indeterminate Whiteware sherds. The predominance of Taos/Kwahe'e Black-on-white and Taos Gray sherds points to a Developmental period, Valdez phase occupation. However, there are no other known Valdez phase sites as large or complex as LA 12741 in the Taos Valley. This suggests that the Anasazi sequence commonly used in the valley, which was derived from sites south of Taos, may not be applicable to the area north of Taos. This is not, however, the only characteristic of the El Pueblito site that sets it apart from other sites in the valley. Over half of the identifiable sherds are bowl sherds. This contrasts with assemblages from the Talpa area south of Taos and with a burial sample from Pojoaque Pueblo, where up to 75 percent of the sherds are from jars. If the predominance of jar sherds is actually related to food storage needs, these figures suggest differing subsistence activities at LA 12741. Over 80 percent of the bowl sherds and almost 90 percent of the jar sherds are varieties of Taos Gray. This also contrasts with the Talpa sites and the Pojoaque burial sample, where jar sherds were usually plain or decorated "utility" wares and bowl sherds were usually painted wares. These figures may suggest differing levels of access to nonlocal painted ceramics.

Chipped stone artifacts numbering 260 were collected from El Pueblito. Two varieties of basalt make up almost 90 percent of the lithic assemblage. Basalt is the most common lithic material on sites in the northern part of the Taos Valley. However, studies in the area south and southwest of Taos suggest that basalt was used primarily in response to its availability and was not transported to other areas in great quantities. Lithic artifact data indicate that both primary core reduction and tool manufacture were rare activities. Most lithic reduction involved flake removal from already reduced cores. Of the 260 lithic artifacts, only 10 are formal tools. They include five projectile points, blanks, or fragments, a broken drill, and four bifaces.

Thirty-six faunal bone fragments were collected. Twenty-six could only be identified as small, medium, or large mammals. Ten could be identified to one genus and three species, including pocket gopher, desert cottontail, deer, and turkey. All are commonly found as subsistence remains from pueblo sites, but only turkey was domesticated. The high frequency of large mammal and deer bones may indicate that hunting played an important role in the subsistence activities of the site occupants.
Two macrobotanical samples include burned corn cupules and remains of wild plant foods. The two samples are very different in composition. They show that prehistoric subsistence activities included agriculture and wild plant gathering. Two microbotanical samples were also analyzed and are also very different in composition as well as concentration. It is not currently possible to demonstrate that the samples from the burial abdominal region represent plant remains in the individual's digestive tract at the time of death. However, the differences between the jar and abdominal samples and the high frequency of wild plant remains and high concentration of food plant pollens in the abdominal samples suggest that this may be the case. *Zea mays* pollen was not found in either sample, although we expected it to be present in the jar because of ceremonial activity associated with the burial.

Taken together, the condition of the burial, the jar/bowl sherd ratio, the frequency of projectile points, blanks, and fragments, the frequency of large mammal and deer bones, and the predominance of wild plant food remains in the floral samples suggest that subsistence activities at LA 12741 focused less on agricultural pursuits and more on utilization of wild, gathered foods. Clearly, the small samples of artifacts and faunal and floral remains collected during this project represent only a very small fraction of the cultural materials available at the site. Consequently, while we offer interpretations of the data from these samples, we must assume that they may not be accurate in the face of problems of sample size.
Inspection of the roadcut at LA 12741 demonstrates that highway maintenance activities did not directly expose the human remains recovered during this project. Rather, the remains were exposed by natural erosion of an existing steep roadcut. This project recovered the remains before erosion could expose them further or they could be removed without authorization or appropriate study. Artifacts recovered help establish the site context and represent the only systematic work performed to date at this large site.

The officials of Taos Pueblo have maintained a strong interest in this project since its inception because of the context of the site in the history of the tribe. The site is considered ancestral to Taos Pueblo and the tribe has asked that the remains and the funerary objects be given to them for reburial. In cooperation with tribal officials, the Office of Archaeological Studies has formulated a plan for disposition of the remains. This plan is specified in correspondence between the OAS and Taos Pueblo that is included in this report as Appendix 1. It describes the disposition plan and includes an agreement for documenting the remains.
REFERENCES CITED

Anschuetz, Kurt A.
1986 *Archaeological Excavation of Two Human Burials within the U.S. 285 Right-of-Way at Pojoaque Pueblo, Santa Fe County, New Mexico.* Laboratory of Anthropology Notes No. 353. Museum of New Mexico, Santa Fe.

Bass, William M.

Baxter, John O.
1990 *Spanish Irrigation in the Taos Valley.* New Mexico State Engineer Office, Santa Fe.

Beaglehole, Ernest
1936 *Hopi Hunting and Hunting Ritual.* Publications in Anthropology No. 4. Yale University, New Haven.

Boyer, Jeffrey L.

Boyer, Jeffrey L., and Daisy F. Levine
1991 *The Talpa Testing Project: Archaeological Test Excavations along State Road 518 and a Data Recovery Plan for LA 77861, Taos County, New Mexico.* Archaeology Notes No. 27. Office of Archaeological Studies, Museum of New Mexico, Santa Fe.

Brock, Sharon L.
1985 *Biomechanical Adaptation of the Lower Limb Bones through Time in the Prehistoric Southwest.* Unpublished Dissertation, Department of Anthropology, University of New Mexico, Albuquerque.
Brody, J. J.

Bullock, Peter Y., Signa L. Larralde, Sarah H. Schlanger, and Regge N. Wiseman

Condie, Carol J., and Landon D. Smith

Cordell, Linda S.

Crown, Patricia L.

Cushing, Frank H.

Dick, Herbert W.

Ellis, Florence H., and J. J. Brody

Green, Ernestine L.

Greiser, Sally T., T. Weber Greiser, and David Putnam
Hacker, Leroy W., and Joseph O. Carleton
1982 *Soil Survey of Taos County and Parts of Rio Arriba and Mora Counties, New Mexico.* USDA Soil Conservation Service and Forest Service, USDI Bureau of Indian Affairs and Bureau of Land Management, New Mexico Agricultural Experiment Station, Las Cruces.

Heffern, Ed

Holloway, Richard G.

Hume, Valerie

Jeancon, J. A.

Loose, Ann A.

1974 *Soil Associations and Land Classification for Irrigation, Taos County.* Research Report 268. New Mexico State University Agricultural Experiment Station, Las Cruces.

McCrary, Oliver C.

Michels, Joseph W.

Office of Archaeological Studies
Ottaway, Lucretia V.

Peckham, Stewart, and Erik K.Reed
1963 Three Sites near Ranchos de Taos, New Mexico. In Highway Salvage Archaeology, vol. 4, assembled by Stewart Peckham. New Mexico State Highway Department and Museum of New Mexico, Santa Fe.

Quinn, Kathleen

Rayl, Sandra L.

Rudecoff, Christine A.

Rule, Pam

Schaafsma, Curtis F.

Seaman, Timothy J.
1983 Archeological Investigations on Guadalupe Mountain, Taos County, New Mexico. Laboratory of Anthropology Notes No. 309. Museum of New Mexico, Santa Fe.

Spielmann, Katherine A.
1983 Late Prehistoric Exchange between the Southwest and Southern Plains. Plains Anthropologist 28(1).

Steen, Charlie
1976 Archaeological Survey and Excavations at LA 14868, Taos County, New Mexico. Manuscript in Site Survey Files, Laboratory of Anthropology, Museum of New Mexico, Santa Fe.
Stuart, David E., and Rory P. Gauthier
1981 *Prehistoric New Mexico.* Historic Preservation Bureau, Santa Fe.

Thomas, David H.

Toll, Mollie S.
1990 *Floation from a Burial at El Pueblito (LA 12741), Arroyo Hondo, New Mexico: Preliminary Results from Scanning.* Castetter Laboratory for Ethnobotanical Studies, University of New Mexico, Albuquerque.

Ubelaker, Douglas H., T. W. Phenice, and W. M. Bass

Vickery, Lucretia D.

Viklund, Lonyta

Wendorf, Fred, and Erik K. Reed

Wetherington, Ronald K.
1968 *Excavations at Pot Creek Pueblo.* Fort Burgwin Research Center Report No. 6. Fort Burgwin Research Center, Taos.

Woosley, Anne I.
1980 *Taos Archeology.* Fort Burgwin Research Center, Taos.

Young, Jon N., and Bob Lawrence